SLS 3D printing service

Source high-quality parts for prototyping and production easily using selective laser sintering (SLS) 3D printing. Select from industrial-grade materials and a broad range of surface finishes. Our standard lead time is just 3 business days.

What is SLS printing?

Selective Laser Sintering (SLS) is an industrial 3D printing process that is ideal for manufacturing end-use parts. In SLS, a laser selectively sinters polymer powder particles, fusing them together and building a part layer-by-layer. With some of the largest print beds, SLS machines can produce functional plastic parts with isotropic mechanical properties for detailed prototyping or high-volume production orders of end-use parts. SLS is a cost-efficient production method, which our customers regularly choose for the most complex parts and those requiring extensive customization.

Fused Deposition Modeling (FDM) capabilities

FDM 3D printing has two distinct classes: prototyping (desktop) FDM and industrial FDM. These are the key capabilities of both technologies.

SLA 3D printed parts come in many materials

Leading companies and engineers that need to iterate quickly or get strong industrial plastic parts faster use Protolabs Network for our range of prototyping and production materials.

Additional services

Materials Price Dimensional accuracy Strengths Build volume Layer thickness Min. feature size
FDM 5 $ ± 0.5% with a lower limit on ± 0.5 mm Low cost, wide range of materials 500 x 500 x 500 mm (19.68" x 19.68" x 19.68") 100-300μm 2.0 mm (0.0787’')
Industrial FDM 6 $$$$ ± 0.3% with a lower limit of ± 0.3 mm (± 0.012") High level of repeatability, engineering grade materials 406 x 355 x 406 mm (15.98” x 13.97” x 15.98") 100-330μm 2.0 mm (0.0787’')
Prototyping SLA 8 $$ ± 0.3% with a lower limit of ± 0.3 mm (± 0.012") Smooth surface finish, fine feature details 145 × 145 × 175 mm (5.7" x 5.7" x 6.8") 50-100μm 0.2 mm (0.00787’')
Industrial SLA 3 $$$ ± 0.2% with a lower limit of ± 0.13 mm (± 0.005") Smooth surface finish, fine feature details, big print area 500 x 500 x 500 mm (19.68" x 19.68" x 19.68") 50-100μm 0.2 mm (0.00787’')
SLS 2 $$ ± 0.3% with a lower limit of ± 0.3 mm (± 0.012”) Design flexibility, supports not required 395 x 500 x 395 mm (15.53" x 19.68" x 15.53") 100μm 0.5 mm (0.0196”)
MJF 2 $$ ± 0.3% with a lower limit on ± 0.3 mm (0.012’') Design flexibility, supports not required 380 x 285 x 380 mm (14.9’’ x 11.2’’ x 14.9’') 80μm 0.5 mm (0.0196”)

We have high standards for SLS 3D printing

Advantages and drawbacks of SLS 3D printing

Advantages

We manufacture your custom parts according to strict manufacturing standards and ensure all parts and processes adhere to the Protolabs Network Standard. A thorough verification of these requirements is included in our inspection report that we ship with every order.

  • After printing, parts are bead blasted and then air blasted to get rid of the excess powder on the surface.
  • Additional post-processing can be done to improve part’s appearance, such as dyeing, vapor smoothing or tumbling.

Drawbacks

We manufacture your custom parts according to strict manufacturing standards and ensure all parts and processes adhere to the Protolabs Network Standard. A thorough verification of these requirements is included in our inspection report that we ship with every order.

  • After printing, parts are bead blasted and then air blasted to get rid of the excess powder on the surface.
  • Additional post-processing can be done to improve part’s appearance, such as dyeing, vapor smoothing or tumbling.

Comparing SLS to other 3D printing processes

Materials Price Dimensional accuracy Strengths Build volume Layer thickness Min. feature size
FDM 5 $ ± 0.5% with a lower limit on ± 0.5 mm Low cost, wide range of materials 500 x 500 x 500 mm (19.68" x 19.68" x 19.68") 100-300μm 2.0 mm (0.0787’')
Industrial FDM 6 $$$$ ± 0.3% with a lower limit of ± 0.3 mm (± 0.012") High level of repeatability, engineering grade materials 406 x 355 x 406 mm (15.98” x 13.97” x 15.98") 100-330μm 2.0 mm (0.0787’')
Prototyping SLA 8 $$ ± 0.3% with a lower limit of ± 0.3 mm (± 0.012") Smooth surface finish, fine feature details 145 × 145 × 175 mm (5.7" x 5.7" x 6.8") 50-100μm 0.2 mm (0.00787’')
Industrial SLA 3 $$$ ± 0.2% with a lower limit of ± 0.13 mm (± 0.005") Smooth surface finish, fine feature details, big print area 500 x 500 x 500 mm (19.68" x 19.68" x 19.68") 50-100μm 0.2 mm (0.00787’')
SLS 2 $$ ± 0.3% with a lower limit of ± 0.3 mm (± 0.012”) Design flexibility, supports not required 395 x 500 x 395 mm (15.53" x 19.68" x 15.53") 100μm 0.5 mm (0.0196”)
MJF 2 $$ ± 0.3% with a lower limit on ± 0.3 mm (0.012’') Design flexibility, supports not required 380 x 285 x 380 mm (14.9’’ x 11.2’’ x 14.9’') 80μm 0.5 mm (0.0196”)

Design guidelines for SLS

The table summarizes the recommended and technically feasible values for the most common features encountered in SLS printed parts.

FDM 3D printing service

We are Team Quick 3D. We exist to deliver Additive Manufacturing technologies, materials, and applications that enable increase efficiency in every industries.